Slide-and-swap permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Permutation Groups

The theory of permutation groups is essentially the theory of symmetry for mathematical and physical systems. It therefore has major impact in diverse areas of mathematics. Twentieth-century permutation group theory focused on the theory of finite primitive permutation groups, and this theory continues to become deeper and more powerful as applications of the finite simple group classification,...

متن کامل

Partitions and Permutation Groups

We show that non-trivial extremely amenable topological groups are essentially the same thing as permutation models of the Boolean prime ideal theorem that do not satisfy the axiom of choice. Both are described in terms of partition properties of group actions.

متن کامل

Permutation Groups and Polynomials

Given a set S with n elements, consider all the possible one-to-one and onto functions from S to itself. This collection of functions is called the permutation group of S, because the functions are simply permuting the elements of S. We notice immediately that it doesn’t matter what the elements of S are (numbers, planets, tacos, etc) just that there are n distinct ones in the set, so we may re...

متن کامل

Galois Groups as Permutation Groups

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2014

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2014.7.41